Microfluidic sensing: state of the art fabrication and detection techniques.
نویسندگان
چکیده
Here we introduce the existing fabrication techniques, detection methods, and related techniques for microfluidic sensing, with an emphasis on the detection techniques. A general survey and comparison of the fabrication techniques were given, including prototyping (hot embossing, inject molding, and soft lithography) and direct fabrication (laser micromachining, photolithography, lithography, and x-ray lithography) techniques. This is followed by an in-depth look at detection techniques: optical, electrochemical, mass spectrometry, as well as nuclear magnetic resonance spectroscopy-based sensing approaches and related techniques. In the end, we highlight several of the most important issues for future work on microfluidic sensing. This article aims at providing a tutorial review with both introductory materials and inspiring information on microfluidic fabrication and sensing for nonspecialists.
منابع مشابه
Review of Recent Metamaterial Microfluidic Sensors
Metamaterial elements/arrays exhibit a sensitive response to fluids yet with a small footprint, therefore, they have been an attractive choice to realize various sensing devices when integrated with microfluidic technology. Micro-channels made from inexpensive biocompatible materials avoid any contamination from environment and require only microliter-nanoliter sample for sensing. Simple design...
متن کاملElectrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles
In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fa...
متن کاملRapid bench-top fabrication of poly(dimethylsiloxane)/polystyrene microfluidic devices incorporating high-surface-area sensing electrodes.
The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work p...
متن کاملSimple 3D Printed Scaffold‐Removal Method for the Fabrication of Intricate Microfluidic Devices
An easy and cheap fabrication method for intricate polydimethylsiloxane microfluidic devices is presented. The acrylonitrile butadiene styrene scaffold-removal method uses cheap, off-the-shelf materials and equipment for the fabrication of intricate microfluidic devices. The versatility of the method is proven by the fabrication of 3D multilayer, ship-in-a-bottle, selective heating, sensing, an...
متن کاملField effect transistor nanobiosensors: State-of-the-art and key challenges as point of care testing devices
The existing health care systems focus on treating diseases rather than preventing them. Patients are generally not tested unless physiological symptoms are appeared. When they do get tested, the results often take several days and can be inconclusive if the disease is at an early stage. In order to facilitate the diagnostics process and make tests more readily available for patients, the conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2011